OPTICS TRADE

Catadioptric Telescopes

GENERAL PROPERTIES

- •Combination of **two systems**:
 - Forming image with the use of a mirror (catoptric system) and lens (dioptric system)
- •The main elements of catadioptric telescopes are:
 - a short **optical** tube,
 - a **primary** mirror,
 - a **secondary** mirror and
 - a glass corrector.

- The optical tube → sealed and small
- •The light enters the optical tube and passes through the **glass corrector >** primary function of the glass corrector is to limit the **spherical** aberration
- Light rays travel to the primary mirror
- •The beams are collected and bounced towards the secondary mirror
- •From here, the light reflects through a hole in the primary mirror to an **eyepiece**.

DESIGN

The most popular designs are:

- Schmidt-Cassegrain
- Maksutov-Cassegrain

Both telescopes are very **popular** and have a pretty similar design, but there are some differences

Main difference is in corrector plate and secondary mirror

- •Maksutov-Cassegrain uses a **thicker** corrector lens and a different secondary mirror that is located inside of the corrector lens
- Telescopes also have different aperture sizes
 - Schmidt-Cassegrain is designed to have a bigger aperture
- •Catadioptric telescopes have shorter optical tube than refractors and reflectors \rightarrow take up **less space** and are easier to move
- •Their secondary mirror degrades the **performance** for planetary and Moon observations, but overall they are still **great** for observing **all celestial objects**

OPTICS TRADE